Your divemaster stops to show you the tiny marine life that you would usually swim past.  It's fairly easy to get close without touching, by swimming forward gently. But backing up again without hammering the reef with your fins, your knees or your elbows can be difficult.

What's the secret?

Pinpoint buoyancy control is the fundamental skill. Precise control of your buoyancy is what enables you to hover completely motionless, then back out of the area without touching the reef.

You can back out by simply ascending if you've approached from above, with your head well below your fins. And you can ascend without adding air to your BC by controlling your breathing. In fact, you'll improve your buoyancy control by using your BC less, not more.

Bouyancy control looks like a simple matter of balancing the downward force of your weights against the upward force of your BC. When the two cancel out, you're neutral and can hover in the water. Since your weights dont change after you enter the water, you have only one variable to contend with: the upward thrust of your BC.

Buoyancy control requires getting at least six things right. The six factors that affect your buoyancy are your weight, the air in your BC, your trim, your exposure suit buoyancy, your depth and your breath control. Your weight and your trim are the only two factors that, once you've selected them, stay put. All the others are variables, changing during the dive along with time or depth or both. Some you can control, some you can't. Buoyancy control isn't as easy as it looks.

Ballast Weight

The ballast weight you carry doesn't change during a dive, but it's often the biggest problem. Many if not most divers are overweighted, carrying more lead than they need. That makes buoyancy control more difficult because every extra pound of lead has to be balanced with an extra pound of buoyancy. To displace a pound of water and balance the pound of lead requires an air bubble in the BC of about one pint in volume.

But because an air bubble expands and contracts with depth changes, you have to be constantly adding or subtracting air from the bubble to keep its volume at one pint. Five extra pounds, which is not uncommon, means a five-pint bubble that grows and shrinks five times as much with depth changes and needs five times as much adjustment in order for you to maintain neutral buoyancy. So extra lead means extra thrust up or down when you change depth, and requires extra fiddling with your BC valve controls. Sometimes it means nearly constant fiddling.

The first step is to just do it--take off two pounds before your next dive. Can't get below the surface? Getting below the surface, especially on the first dive of the day, can be surprisingly difficult and can trick you into carrying more lead than you really need. Here are a few tips:

Be patient. The plush lining of a dry wetsuit can trap a surprising amount of air, and therefore buoyancy, in its fibers, and it takes a minute or so to get fully wet.

Reach up. Hold the inflator hose over your head and stretch it upward a little so its attachment point to your BC is highest. At the same time dip your right shoulder and squeeze the BC against your chest with your right arm.  This maneuver encourages the last few bubbles to find the exit.

Rock backward a little. Many BCs trap a bubble of air just behind your head. Rocking backward as if you are in a La-Z-Boy recliner moves the exhaust hose over the bubble and lets it escape.

Relax. Many of us move our hands and feet more than we realize, especially at the beginning of the dive. That generates upward thrust, making difficult to descent. To counteract that, hold your right arm still at your side (your left is holding up your exhaust hose), extend your legs and point your fins straight down so they have the least resistance to sinking.

Exhale. There is a tendency to hold your breath, and a lungful of air adds as much as 10 pounds of buoyancy. Exhale and hold it until you start sinking, then take shallow inhales until you get below five feet.

Force it.  Another option is to use your body weight to generate some downward momentum by lifting part of it out of the water, then letting it fall back. This surface dive will let the weight of your legs will drive you downward, and once your fins are in the water you can kick down.

What's the ideal amount of weight?

With a nearly empty tank, say 500 psi, with lungs half full and with no air in your BC, you should be close to neutral at the surface--floating with the water at eye level, for example--and only slightly negative at your 15-foot safety stop. Some divers will be even lighter than that, so they're neutral at 15 feet. That makes them slightly positive as they ascend to the surface, but they can counter that by holding less air in their lungs and taking only shallow breaths. With a full tank, you should be about five pounds heavier, the weight of the other 2,500 psi of air. There are sometimes reasons to be heavier. When there is a lot of surge, some extra lead helps you stay glued to the bottom, for example.

Once you get close to the right amount of lead, you can fine-tune it at your safety stop when your tank is nearly empty and you don't have much else to do for three minutes anyway. Here's one way:

Carry your smallest weight, one or two pounds, loose in a pocket or clipped to a D-ring so you can take it off easily.

When you reach your safety stop with 500 psi left, hand it to your buddy temporarily or put it on the bottom if the water is shallow.

Now, try to get neutral again. Remember to keep your hands and fins as still as possible. Do your test next to the mooring rope for security if you want, but remember you can always overcome a pound or so of positive buoyancy by exhaling and kicking downward. When you're making adjustments so small, there's no reason to fear an uncontrolled ascent. If you can stay neutral at 15 feet without that small weight you took off, you don't need it, and your next dive will be easier without it.  Now retrieve your weight from your buddy.


The next variable to worry about is your trim--the position your body takes in the water when you're neutral and still. This matters for buoyancy because if your fins are lower than your body, kicking to go forward will also make you go up. It will seem that you've suddenly become buoyant, so you'll vent air from your BC. Then, when you stop kicking, you'll be too heavy and you'll sink.

In order for your kicking not to disrupt your buoyancy, your body needs to be trimmed so your legs are nearly horizontal and your fins push you only forward. Here's how to check your trim:

Once you are exactly neutral, hold your body absolutely still with your legs stretched out behind you. If your legs sink, you should move a little weight from your waist to a point higher on your body.

Tank Weight

Your scuba cylinder gets lighter as you dive and use up the air in it. The 80 cubic feet of air pumped into your full tank weighs almost exactly six pounds, and when you breathe it down to 500 psi, you've used up five pounds of that air, so the tank weighs five pounds less. That's a buoyancy shift that has to be countered by venting five pounds of buoyancy from your BC. And that explains why you have to start the dive five pounds heavy--so you have five pounds of buoyancy in your BC to lose and be neutral at the safety stop.

Fortunately, this weight loss and buoyancy gain is gradual. If a tank can last you 60 minutes, it gains only one pound in 10 minutes and you hardly notice it. Also, the tank's buoyancy gain is affected by depth only in the sense that you use up air faster when you are deeper. Because the tank is rigid, its buoyancy does not change immediately just by going 20 feet deeper or shallower.

It is not true, as many divers believe, that you can escape this buoyancy gain by using a steel tank. Steel tanks are typically less buoyant than aluminum to begin with so they may end the dive slightly negative while an aluminum tank is positive. But 80 cubic feet of air weighs just as much in either tank, and the buoyancy gain when you use it up is just as much. Using a steel tank allows you to take a few pounds of weight off your belt, but you have to carry some or all of it in the tank itself, which is typically heavier.

Exposure Suit

Wetsuits float. There's no escaping the fact, because the same thing that makes neoprene warm makes it buoyant: the gas trapped in thousands of tiny bubbles. Their buoyancy (and warmth) varies, but, in general, a new men's wetsuit has two to three pounds of buoyancy for every millimeter of thickness. So a thin tropical suit might have less than two pounds of buoyancy at the surface while a thick cold-water suit might have 20 pounds or more.

The buoyancy of your wetsuit won't change noticeably from one dive to the next, but over time it does lose buoyancy because the thousands of tiny bubbles in the neoprene lose their resiliency and collapse or fill with water. At that point, the wetsuit has less buoyancy.

The good news here is that if you don't change depth, your wetsuit's buoyancy doesn't change either. Once you have your buoyancy dialed in for a given depth, you can forget it. More good news: The very thin wetsuit you'd wear in the tropics has so little buoyancy to begin with that you can pretty much ignore any changes with depth.


Whatever the surface buoyancy of your wetsuit, it will change dramatically with depth. Because pressure flattens those thousands of gas bubbles, your wetsuit gets thinner and displaces less water.  You lose half of your surface buoyancy in the first 33 feet of your descent and a third in the next 33 feet. Below 66 feet, there's only one-sixth of the original buoyancy left to lose no matter how deep you go.

Unlike the buoyancy change in your tank, this buoyancy shift is immediate and goes in both directions. When you ascend, you get back the buoyancy of your wetsuit and your BC instantly. So you have to be alert to buoyancy changes whenever you change depth, and especially when you ascend.

Breath Control

Your lungs are a natural buoyancy compensator with about 10 pounds of buoyant lift. A normal, resting breath expands your lungs by about one pint, giving you one pound more buoyancy. Breathing in and out, your buoyancy fluctuates within a range of about one pound. But you can place that one-pound fluctuation almost anywhere in the total 10-pound range. You can breathe from nearly full lungs and cycle between eight and nine pounds of buoyancy, for example, or you can breathe with nearly empty lungs and cycle between two and three pounds. So as long as you are nearly neutral with a half-breath, you can rise or fall at will just by controlling your lungs.

Putting It Together

Once you get your ballast weight and trim dialed in, you've come a long way toward perfect buoyancy control. Now you can fine-tune your BC inflation to compensate for the very predictable changes due to breathing down your tank and changing depth and use only breath control to drop gently down to that cleaner shrimp, hover inches above it as long as you want and lift away from it harmlessly.

6 Secrets of Buoyancy Control